Acta Cryst. (1998). C54, 1554-1556

Barium Cobalt Phosphate, $\mathbf{B a C o}_{\mathbf{2}}\left(\mathbf{P O}_{4}\right)_{\mathbf{2}}$

Zsolt Bircsak and William T. A. Harrison
Department of Chemistry, University of Western Australia, Nedlands, WA 6907, Australia. E-mail: wtah@chem.uwa. edu.au

(Received 24 March 1998; accepted 5 June 1998)

Abstract

Barium dicobalt(II) bis(phosphate) is built up from BaO_{12} polyhedra $\left[d_{\mathrm{av}}(\mathrm{Ba}-\mathrm{O})=2.995(1) \AA\right], \mathrm{CoO}_{6}$ octahedra $\left[d_{\mathrm{av}}(\mathrm{Co}-\mathrm{O})=2.098(2) \AA\right]$ and PO_{4} tetrahedra $\left[d_{\mathrm{av}}(\mathrm{P}-\mathrm{O})=1.544(2) \AA\right.$ A. The structure has a strongly layered nature, with Ba^{2+} cations interspersing infinite sheets of edge-sharing CoO_{6} groups, which are capped by phosphate tetrahedra. The title compound is isostructural with $\mathrm{BaNi}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$.

Comment

Cobalt(II) phosphates built up from vertex-sharing tetrahedral CoO_{4} and PO_{4} units are of great current interest for their structural similarities to aluminosilicate zeolites (Feng, Bu, Tolbert \& Stucky, 1997). However, other recently described cobalt(II) phosphates demonstrate the relative lack of coordinational preference of the Co^{2+} species. NaCoPO_{4} (Feng, Bu \& Stucky, 1997) contains CoO_{5} trigonal bipyramids, whereas $\mathrm{Ba}\left(\mathrm{CoPO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Bu et al., 1997) contains CoO_{6} octahedra. $\mathrm{Co}_{2}(\mathrm{OH}) \mathrm{PO}_{4}$ (Harrison et al., 1995) contains Co in both octahedral and trigonal bipyramidal coordination.

We report here the structure of $\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Fig. 1) which is a layered material built up from BaO_{12} groups (Ba site symmetry $\overline{3}$), CoO_{6} octahedra (Co site symmetry 3) and PO_{4} tetrahedra (P site symmetry 3). $\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ is isostructural with $\mathrm{BaNi}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$ (Eymond, Durif \& Martin, 1969). Based on X-ray powder data, $\mathrm{BaMg}_{2}\left(\mathrm{AsO}_{4}\right)_{2}, \mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}, \mathrm{BaNi}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ (Eymond, Martin \& Durif, 1969) and $\mathrm{BaNi}_{2}\left(\mathrm{VO}_{4}\right)_{2}$ (Wichmann \& Müller-Buschbaum, 1984) adopt the same crystal structure. We note that all these phases were prepared by high-temperature ceramic methods, compared with the hydrothermal synthesis used for $\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$.
$\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ is built up from sheets of edge-sharing CoO_{6} octahedra, arrayed normal to [001]. These layers form six-ring (six octahedra) windows. Two $\mathrm{Pl}-\mathrm{Ol}$ units cap both sides of each window as PO_{4} tetrahedra (Fig. 2). The anionic $\left[\mathrm{Co}_{2}\left(\mathrm{PO}_{4}\right)_{2}\right]^{2-}$ sheets are stacked in an $a b c a b c . .$. sequence along [001], and are laterally displaced by $\Delta x=\frac{2}{3} a$, with $\Delta y=\frac{1}{3} b$ between layers. The interlayer separation, from Co plane to Co plane, is 7.738 (1) \AA. Twelve-coordinate Ba^{2+} cations provide the

Fig. 1. Polyhedral view of the $\mathrm{BaCO}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ structure. Ba^{2+} species are represented by spheres of arbitrary radii.

Fig. 2. Fragment of $\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ viewed approximately down [001] (50\% displacement ellipsoids).
charge-compensating interlayer species, forming bonds with six O 1 and six O 2 atoms. O 2 bonds to two Co , one P and one Ba atom, whereas Ol bonds to one P and three Ba neighbours. Bond-valence-sum (BVS) calculations (Brown, 1996) are typical for the species involved: Ba 1 1.86, Col 2.01, P1 4.89, O1 2.05 and O2 1.95 (expected values: Ba 2.00 , Co 2.00, P 5.00 and O 2.00).
$\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ shows few structural similarities with $\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{Bu}$ et al., 1997), even though both phases have lamellar character. The latter phase con-
tains the unusual feature of edge-sharing $\mathrm{CoO}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)$ octahedra and PO_{4} tetrahedra. Its $\mathrm{Co}-\mathrm{O}-\mathrm{Co}$ connectivity results in one-dimensional corner-sharing chains of $\mathrm{CoO}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups. The only other well characterized barium cobalt(II) phosphate, $\mathrm{BaCoP}_{2} \mathrm{O}_{7}$ (Riou et al., 1988), adopts a completely different structure to $\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ based on a three-dimensional array of vertex-sharing CoO_{6} and $\mathrm{P}_{2} \mathrm{O}_{7}$ moieties. The relationship between the $A M_{2}\left(\mathrm{XO}_{4}\right)_{2}$-type structure adopted by $\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ and the rhombohedral $A M X \mathrm{O}_{4}$-type structure adopted by phases such as KNiAsO_{4} is discussed by Buckley et al. (1988).

Experimental

Single crystals of $\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$ were prepared from a mixture of $\mathrm{BaCO}_{3}(1.375 \mathrm{~g}), \mathrm{CoBr}_{2}(1.523 \mathrm{~g}), 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(3.33 \mathrm{~g})$, guanidinium carbonate $\left\{\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]_{2} \mathrm{CO}_{3} ; 1.254 \mathrm{~g}\right\}$ and $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{ml})$. These components were sealed in a 23 ml teflon-lined hydrothermal bomb and heated to 453 K for 3 d . After cooling to ambient temperature over several hours, pink crystals of the title compound were recovered by vacuum filtration and drying in air.

Crystal data

$\mathrm{BaCo}_{2}\left(\mathrm{PO}_{4}\right)_{2}$
$M_{r}=445.14$
Trigonal
$R \overline{3}$
$a=4.8554(6) \AA$
$c=23.2156(17) \AA$
$V=473.98(9) \AA^{3}$
$Z=3$
$D_{x}=4.679 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer $\theta / 2 \theta$ scans
Absorption correction:
empirical ψ scan (North et al., 1968)
$T_{\text {min }}=0.080, T_{\text {max }}=0.093$
1134 measured reflections
390 independent reflections
383 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.017$ (for observed reflections)
$w R\left(F^{2}\right)=0.045$
$S=1.18$
390 reflections
23 parameters

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0125 P)^{2}\right. \\
\\
\quad+3.0015 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001
\end{array}
\end{aligned}
$$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 29 reflections
$\theta=5.0-13.5^{\circ}$
$\mu=11.868 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$ Pink
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=32.44^{\circ}$
$h=-1 \rightarrow 7$
$k=-7 \rightarrow 1$
$l=-34 \rightarrow 34$
3 standard reflections every 97 reflections intensity decay: none
$\Delta \rho_{\text {max }}=1.15 \mathrm{e}^{-3}$ ($1.42 \AA$ from O2) $\Delta \rho_{\text {min }}=-0.97 \mathrm{e}^{-3}$
Extinction correction: SHELX 97 (Sheldrick, 1997)

Extinction coefficient: 0.0098 (6)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} \alpha^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Bal	0	0	0	0.01059 (13)
Col	0	0	0.17021 (2)	0.00725 (14)
P1	1/3	2/3	0.24129 (4)	0.00579 (18)
01	1/3	$2 / 3$	0.30633 (13)	0.0118 (5)
O 2	0.3455 (4)	0.3700)(4)	0.21959 (9)	0.0106 (3)

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Bal}-\mathrm{Ol}^{1}$	2.8725 (7)	$\mathrm{Col-O} 2^{\prime \prime}$	$2.112(2)$
$\mathrm{Bal}-\mathrm{O}^{1}$	3.1168 (19)	P1-O1	1.510 (3)
$\mathrm{Col}-\mathrm{O} 2$	2.0837 (19)	$\mathrm{P} 1-\mathrm{O} 2$	1.5548 (19)
$\mathrm{O} 2-\mathrm{Col}-\mathrm{O}^{\prime \prime \prime}$	92.64 (8)	$\mathrm{OI}-\mathrm{Pl}-\mathrm{O}^{\text {¹ }}$	108.90(8)
$\mathrm{O} 2-\mathrm{Col}-\mathrm{O}^{\prime \prime}$	95.97 (7)	$\mathrm{O} 2^{\text {"1 }}-\mathrm{Pl}-\mathrm{O}^{\text {a }}$	110.03 (8)
$\mathrm{O} 2^{\prime \prime 1}-\mathrm{Col}-\mathrm{O}^{\prime \prime}$	86.09 (11)	$\mathrm{P} 1-\mathrm{O} 2-\mathrm{Col}$	126.15(11)
$\mathrm{O} 2^{\prime \prime}-\mathrm{Col}-\mathrm{O}^{\prime \prime}$	171.34 (8)	$\mathrm{Pl}-\mathrm{O} 2-\mathrm{Col}^{\prime \prime}$	130.61 (11)
$\mathrm{O} 2^{\prime \prime}-\mathrm{Col}-\mathrm{O} 2^{\prime}$	85.53 (8)	$\mathrm{Col}-\mathrm{O} 2-\mathrm{Col}^{11}$	84.03 (7)

Symmetry codes: (i) $x-\frac{2}{3}, y-\frac{1}{3}, z-\frac{1}{3}$; (ii) $\frac{2}{3}-x, \frac{1}{3}-y, \frac{1}{3}-z$; (iii) $-x+y,-x, z$; (iv) $-y, x-y, z ;$ (v) $x-y-\frac{1}{3}, x-\frac{2}{3}, \frac{1}{3}-z$; (vi) $-x+y, 1-x, z ;$ (vii) $1-y, 1+x-y, z$.

Data collection: P4 Software (Siemens, 1995). Cell refinement: P4 Software. Data reduction: P4 Software. Program(s) used to solve structure: SHELX97 (Sheldrick, 1997). Program(s) used to refine structure: SHELX97. Molecular graphics: ORTEP3 (Farrugia, 1997). Software used to prepare material for publication: SHELX97.

We thank the Australian Research Council for funding.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1136). Services for accessing these data are described at the back of the journal.

References

Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
Bu, X., Feng, P. \& Stucky, G. D. (1997). J. Solid State Chem. 131, 387-393.
Buckley, A. M., Bramwell, S. T., Day, P. \& Harrison, W. T. A. (1988). Z. Naturforsch. Teil B, 43, 1053-1055.

Eymond, S., Durif, A. \& Martin, C. (1969). C. R. Acad. Sci. Ser. C, 268, 1694-1696.
Eymond, S., Martin, C. \& Durif, A. (1969). Mater. Res. Bull. 4, 595600.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Feng, P., Bu, X. \& Stucky, G. D. (1997). J. Solid State Chem. 129, 323-333.
Feng, P., Bu, X., Tolbert, S. H. \& Stucky, G. D. (1997). J. Am. Chem. Soc. 119, 2497-2504.
Harrison, W. T. A., Vaughey, J. T., Dussack, L. L., Jacobson, A. J., Martin, T. E. \& Stucky, G. D. (1995). J. Solid State Chem. 114, 151-158.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Riou, D., Labbe, P. \& Goreaud, M. (1988). C. R. Acad. Sci. Ser. C, 307, 903-907.
Sheldrick, G. M. (1997). SHELX97. Program for the Solution and Refinement of Crystal Structures. University of Göttingen, Germany.

Siemens (1995). P4 Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wichmann, R. \& Müller-Buschbaum, H. (1984). Rev. Chim. Miner. 21, 824-830.

Acta Cryst. (1998). C54, 1556-1558

$\mathrm{K}_{6}\left[\mathrm{As}_{\mathbf{6}} \mathbf{V}_{\mathbf{1 5}} \mathbf{O}_{\mathbf{4 2}}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)\right] . \mathbf{6 H}_{\mathbf{2}} \mathbf{O}$

Guo-Yu Yang, ${ }^{a}$ Lian-Shan Chen, ${ }^{a}{ }^{\text {Ji-Qing }} \mathrm{Xu}^{a}{ }^{a}$ Ya-Feng Li, ${ }^{a}$ Hao-Ran Sun, ${ }^{a}$ Zhi-Wu Pei, ${ }^{\text {b }}$ Qiang Su, ${ }^{b}$ Yong-Hua Lin, ${ }^{c}$ Yan Xing ${ }^{c}$ and Heng-Qing Jia ${ }^{c}$
${ }^{a}$ Department of Chemistry, Jilin University, Changchun 130023, People's Republic of China, ${ }^{b}$ Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, and 'Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China. E-mail: $x j q @ m a i l . j l u . e d u . c n$

(Received 27 August 1997; accepted 10 April 1998)

Abstract

The crystal structure of hexapotassium dotetracontaoxo(hexaarsenio)pentadecavanadate(IV) heptahydrate, K_{6} [$\left.\mathrm{As}_{6} \mathrm{~V}_{15} \mathrm{O}_{42}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] .6 \mathrm{H}_{2} \mathrm{O}$, is composed of an $\left[\mathrm{As}_{6} \mathrm{~V}_{15}-\right.$ $\left.\mathrm{O}_{42}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{6-}$ anion, which has D_{3} symmetry, and six seven-coordinate potassium ions. There is an $\mathrm{H}_{2} \mathrm{O}$ molecule at the centre of the heteropolyanion. This anion consists of VO_{5} pyramids linked by $\mathrm{As}_{2} \mathrm{O}_{5}$ units through shared O atoms. The $\mathrm{V}-\mathrm{O}$ distances range from 1.604 (4) to 2.009 (4) \AA, As-O from 1.772 (4) to 1.793 (3) \AA, and $\mathrm{K} \cdots \mathrm{O}$ from 2.676 (6) to 3.311 (4) Å.

Comment

Iso- and heteropolyvanadates usually contain molecular anions with interesting cage structures. These polyvanadate cage anions form inclusion compounds with neutral molecules and anions, among which are [$\mathrm{V}_{12}-$ $\left.\mathrm{O}_{32}(\mathrm{MeCN})\right]^{4-}$ (Day et al., 1989), $\left[\mathrm{V}_{18} \mathrm{O}_{42}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{12^{-}}$ (Johnson \& Schlemper, 1978), $\left[\mathrm{V}_{18} \mathrm{O}_{42} \mathrm{H}_{9}\left(\mathrm{VO}_{4}\right)\right]^{6-}$, $\left[\mathrm{V}_{18} \mathrm{O}_{42}\left(\mathrm{SO}_{4}\right)\right]^{8-},\left[\mathrm{As}_{6} \mathrm{~V}_{15} \mathrm{O}_{42}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{6-},\left[\mathrm{As}_{8} \mathrm{~V}_{1+} \mathrm{O}_{42}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{4-},\left[\mathrm{As}_{8} \mathrm{~V}_{14} \mathrm{O}_{42}(X)\right]^{6-}\left(X=\mathrm{SO}_{3}^{2-}\right.$ or $\mathrm{SO}_{4}^{2^{2-}}$; Müller \& Döring, 1991) and $\left[\mathrm{As}_{8} \mathrm{~V}_{14} \mathrm{O}_{42}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1 / 2}\right]^{4-}$ (Huan et al., 1991). The crystal structure has been reported for an $\left[\mathrm{As}_{6} \mathrm{~V}_{15} \mathrm{O}_{42}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{6-}$ anion with $\mathrm{H}_{2} \mathrm{O}$ at the centre in $\mathrm{K}_{6}\left[\mathrm{As}_{6} \mathrm{~V}_{15} \mathrm{O}_{42}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] .8 \mathrm{H}_{2} \mathrm{O}$ (Müller \& Döring, 1988, 1991). The present study concerns the phase $\mathrm{K}_{6}\left[\mathrm{As}_{6} \mathrm{~V}_{15} \mathrm{O}_{42}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] .6 \mathrm{H}_{2} \mathrm{O}$, (I), which contains a similar anion to that found in $\mathrm{K}_{6}\left[\mathrm{As}_{6} \mathrm{~V}_{15} \mathrm{O}_{42}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.$8 \mathrm{H}_{2} \mathrm{O}$ (Müller \& Döring, 1988, 1991).

The $\left[\mathrm{As}_{6} \mathrm{~V}_{15} \mathrm{O}_{42}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{6-}$ anion has D_{3} symmetry, and consists of 15 distorted VO_{5} square pyramids and $\operatorname{six} \mathrm{AsO}_{3}$ triangular pyramids, with a statistically disordered $\mathrm{H}_{2} \mathrm{O}$ molecule at its centre. Two AsO_{3} groups are joined to each other via an oxygen bridge and form an $\mathrm{As}_{2} \mathrm{O}_{5}$ unit. Every VO_{5} consists of one terminal O and four bridging O atoms. The VO_{5} pyramids are joined through vertices and edges to their neighbouring VO_{5} pyramids, but the AsO_{3} groups are connected by VO_{5} pyramids only through vertices. The $15 \mathrm{VO}_{5}$ pyramids linked with one another through vertices and edges are connected by $\mathrm{As}_{2} \mathrm{O}_{5}$ units through shared O atoms, and form a ball-like structure.

Fig. 1. View of the $\left[\mathrm{As}_{6} \mathrm{~V}_{15} \mathrm{O}_{42}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{6-}$ anion, with displacement ellipsoids at the 50% probability level.

