Acta Cryst. (1998). C54, 1554-1556

Barium Cobalt Phosphate, $BaCo_2(PO_4)_2$

ZSOLT BIRCSAK AND WILLIAM T. A. HARRISON

Department of Chemistry, University of Western Australia, Nedlands, WA 6907, Australia. E-mail: wtah@chem.uwa. edu.au

(Received 24 March 1998; accepted 5 June 1998)

Abstract

Barium dicobalt(II) bis(phosphate) is built up from BaO_{12} polyhedra $[d_{av}(Ba-O) = 2.995(1) \text{ Å}], CoO_6 \text{ oc-}$ tahedra $[d_{av}(Co-O) = 2.098(2) \text{ Å}]$ and PO₄ tetrahedra $[d_{av}(P - O) = 1.544 (2) \text{ Å}]$. The structure has a strongly layered nature, with Ba²⁺ cations interspersing infinite sheets of edge-sharing CoO₆ groups, which are capped by phosphate tetrahedra. The title compound is isostructural with $BaNi_2(AsO_4)_2$.

Comment

Cobalt(II) phosphates built up from vertex-sharing tetrahedral CoO₄ and PO₄ units are of great current interest for their structural similarities to aluminosilicate zeolites (Feng, Bu, Tolbert & Stucky, 1997). However, other recently described cobalt(II) phosphates demonstrate the relative lack of coordinational preference of the Co²⁺ species. NaCoPO₄ (Feng, Bu & Stucky, 1997) contains CoO₅ trigonal bipyramids, whereas Ba(CoPO₄)₂.H₂O (Bu et al., 1997) contains CoO₆ octahedra. Co₂(OH)PO₄ (Harrison et al., 1995) contains Co in both octahedral and trigonal bipyramidal coordination.

We report here the structure of $BaCo_2(PO_4)_2$ (Fig. 1) which is a layered material built up from BaO_{12} groups (Ba site symmetry $\bar{3}$), CoO₆ octahedra (Co site symmetry 3) and PO₄ tetrahedra (P site symmetry 3). $BaCo_2(PO_4)_2$ is isostructural with $BaNi_2(AsO_4)_2$ (Eymond, Durif & Martin, 1969). Based on X-ray powder data, $BaMg_2(AsO_4)_2$, $BaCo_2(AsO_4)_2$, $BaNi_2(PO_4)_2$ (Eymond, Martin & Durif, 1969) and BaNi₂(VO₄)₂ (Wichmann & Müller-Buschbaum, 1984) adopt the same crystal structure. We note that all these phases were prepared by high-temperature ceramic methods, compared with the hydrothermal synthesis used for $BaCo_2(PO_4)_2$.

 $BaCo_2(PO_4)_2$ is built up from sheets of edge-sharing CoO_6 octahedra, arrayed normal to [001]. These layers form six-ring (six octahedra) windows. Two P1-O1 units cap both sides of each window as PO₄ tetrahedra (Fig. 2). The anionic $[Co_2(PO_4)_2]^{2-}$ sheets are stacked in an *abcabc*... sequence along [001], and are laterally displaced by $\Delta x = \frac{2}{3}a$, with $\Delta y = \frac{1}{3}b$ between layers. The interlayer separation, from Co plane to Co plane, is 7.738 (1) Å. Twelve-coordinate Ba^{2+} cations provide the

Fig. 1. Polyhedral view of the $BaCo_2(PO_4)_2$ structure. Ba^{2+} species

 \cap

Fig. 2. Fragment of BaCo₂(PO₄)₂ viewed approximately down [001] (50% displacement ellipsoids).

charge-compensating interlayer species, forming bonds with six O1 and six O2 atoms. O2 bonds to two Co, one P and one Ba atom, whereas O1 bonds to one P and three Ba neighbours. Bond-valence-sum (BVS) calculations (Brown, 1996) are typical for the species involved: Ba1 1.86, Co1 2.01, P1 4.89, O1 2.05 and O2 1.95 (expected values: Ba 2.00, Co 2.00, P 5.00 and O 2.00).

 $BaCo_2(PO_4)_2$ shows few structural similarities with $BaCo_2(PO_4)_2$, H_2O (Bu *et al.*, 1997), even though both phases have lamellar character. The latter phase contains the unusual feature of edge-sharing $CoO_5(H_2O)$ octahedra and PO₄ tetrahedra. Its Co—O—Co connectivity results in one-dimensional corner-sharing chains of $CoO_5(H_2O)$ groups. The only other well characterized barium cobalt(II) phosphate, $BaCoP_2O_7$ (Riou *et al.*, 1988), adopts a completely different structure to $BaCo_2(PO_4)_2$ based on a three-dimensional array of vertex-sharing CoO_6 and P_2O_7 moieties. The relationship between the $AM_2(XO_4)_2$ -type structure adopted by $BaCo_2(PO_4)_2$ and the rhombohedral $AMXO_4$ -type structure adopted by phases such as KNiAsO₄ is discussed by Buckley *et al.* (1988).

Experimental

Single crystals of $BaCo_2(PO_4)_2$ were prepared from a mixture of $BaCO_3$ (1.375 g), $CoBr_2$ (1.523 g), 85% H₃PO₄ (3.33 g), guanidinium carbonate {[C(NH₂)₃]₂CO₃; 1.254 g} and H₂O (10 ml). These components were sealed in a 23 ml teflon-lined hydrothermal bomb and heated to 453 K for 3 d. After cooling to ambient temperature over several hours, pink crystals of the title compound were recovered by vacuum filtration and drying in air.

Crystal data

$BaCo_2(PO_4)_2$	Mo $K\alpha$ radiation
$M_r = 445.14$	$\lambda = 0.71073 \text{ Å}$
Trigonal	Cell parameters from 29
R3	reflections
a = 4.8554 (6) Å	$\theta = 5.0 - 13.5^{\circ}$
c = 23.2156 (17) Å $V = 473.98 (9) \text{ Å}^3$	$\mu = 11.868 \text{ mm}^{-1}$
$V = 473.98(9) \text{ Å}^3$	T = 298 (2) K
Z = 3	Block
$D_x = 4.679 \text{ Mg m}^{-3}$	$0.3 \times 0.2 \times 0.2$ mm
D_m not measured	Pink

Data collection Siemens P4 diffractometer $\theta/2\theta$ scans Absorption correction: empirical ψ scan (North et al., 1968) $T_{min} = 0.080, T_{max} = 0.093$ 1134 measured reflections 390 independent reflections 383 reflections with $l > 2\sigma(l)$

Refinement

Refinement on F^2 R(F) = 0.017 (for observed reflections) $wR(F^2) = 0.045$ S = 1.18390 reflections 23 parameters $w = 1/[\sigma^2(F_o^2) + (0.0125P)^2 + 3.0015P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $R_{int} = 0.033$ $\theta_{max} = 32.44^{\circ}$ $h = -1 \rightarrow 7$ $k = -7 \rightarrow 1$ $l = -34 \rightarrow 34$ 3 standard reflections every 97 reflections intensity decay: none

 $\begin{array}{l} \Delta \rho_{max} = 1.15 \ e \ {\rm \AA}^{-3} \\ (1.42 \ {\rm \AA} \ from \ O2) \\ \Delta \rho_{min} = -0.97 \ e \ {\rm \AA}^{-3} \\ Extinction \ correction: \\ SHELX97 \ (Sheldrick, \\ 1997) \\ Extinction \ coefficient: \\ 0.0098 \ (6) \\ Scattering \ factors \ from \\ International \ Tables \ for \\ Crystallography \ (Vol. \ C) \end{array}$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{eq} =$	(1)	/3) $\Sigma_i \Sigma_i$	$_{ij}U^{ij}a^{i}a^{j}\mathbf{a}_{i}.\mathbf{a}_{j}.$
------------	-----	-------------------------	---

			• •	
	x	y	z	U_{eq}
Bal	0	0	0	0.01059 (13)
Col	0	0	0.17021(2)	0.00725(14)
PI	1/3	2/3	0.24129 (4)	0.00579(18)
01	1/3	2/3	0.30633 (13)	0.0118 (5)
02	0.3455 (4)	0.3700(4)	().21959 (9)	0.0106 (3)

Table 2. Selected geometric parameters (Å, °)

Ba1—O1 ¹	2.8725 (7)	Co1—O2"	2.112 (2)				
Ba1—O2 ¹	3.1168 (19)	P1—O1	1.510 (3)				
Co1—O2	2.0837 (19)	P1—O2	1.5548 (19)				
02Co1O2'''	92.64 (8)	O1—P1—O2 ^{v1}	108.90 (8)				
02Co1O2''	95.97 (7)	O2 ^{v1} —P1—O2 ^{v11}	110.03 (8)				
02'''Co1O2''	86.09 (11)	P1—O2—Co1	126.15 (11)				
02''Co1O2''	171.34 (8)	P1—O2—Co1 ⁿ	130.61 (11)				
02''Co1O2'	85.53 (8)	Co1—O2—Co1 ⁿ	84.03 (7)				
Symmetry codes: (i) $x - \frac{2}{3}$, $y - \frac{1}{3}$, $z - \frac{1}{3}$; (ii) $\frac{2}{3} - x$, $\frac{1}{3} - y$, $\frac{1}{3} - z$; (iii) $-x + y$, $-x$, z ; (iv) $-y$, $x - y$, z ; (v) $x - y - \frac{1}{3}$, $x - \frac{2}{3}$, $\frac{1}{3} - z$; (vi) $-x + y$, $1 - x$, z ; (vii) $1 - y$, $1 + x - y$, z .							

Data collection: P4 Software (Siemens, 1995). Cell refinement: P4 Software. Data reduction: P4 Software. Program(s) used to solve structure: SHELX97 (Sheldrick, 1997). Program(s) used to refine structure: SHELX97. Molecular graphics: ORTEP3 (Farrugia, 1997). Software used to prepare material for publication: SHELX97.

We thank the Australian Research Council for funding.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1136). Services for accessing these data are described at the back of the journal.

References

- Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
- Bu, X., Feng, P. & Stucky, G. D. (1997). J. Solid State Chem. 131, 387-393.
- Buckley, A. M., Bramwell, S. T., Day, P. & Harrison, W. T. A. (1988). Z. Naturforsch. Teil B, 43, 1053-1055.
- Eymond, S., Durif, A. & Martin, C. (1969). C. R. Acad. Sci. Ser. C, 268, 1694–1696.
- Eymond, S., Martin, C. & Durif, A. (1969). Mater. Res. Bull. 4, 595-600.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Feng, P., Bu, X. & Stucky, G. D. (1997). J. Solid State Chem. 129, 323–333.
- Feng, P., Bu, X., Tolbert, S. H. & Stucky, G. D. (1997). J. Am. Chem. Soc. 119, 2497–2504.
- Harrison, W. T. A., Vaughey, J. T., Dussack, L. L., Jacobson, A. J., Martin, T. E. & Stucky, G. D. (1995). J. Solid State Chem. 114, 151-158.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Riou, D., Labbe, P. & Goreaud, M. (1988). C. R. Acad. Sci. Ser. C, 307, 903–907.
- Sheldrick, G. M. (1997). SHELX97. Program for the Solution and Refinement of Crystal Structures. University of Göttingen, Germany.

Siemens (1995). P4 Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Wichmann, R. & Müller-Buschbaum, H. (1984). *Rev. Chim. Miner.* 21, 824–830.

Acta Cryst. (1998). C54, 1556-1558

$K_6[As_6V_{15}O_{42}(H_2O)].6H_2O$

Guo-Yu Yang,^a Lian-Shan Chen,^a Ji-Qing Xu,^a Ya-Feng Li,^a Hao-Ran Sun,^a Zhi-Wu Pei,^b Qiang Su,^b Yong-Hua Lin,^c Yan Xing^c and Heng-Qing Jia^c

^aDepartment of Chemistry, Jilin University, Changchun 130023, People's Republic of China, ^bLaboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, and ^cChangchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China. E-mail: xjq@mail.jlu.edu.cn

(Received 27 August 1997; accepted 10 April 1998)

Abstract

The crystal structure of hexapotassium dotetracontaoxo-(hexaarsenio)pentadecavanadate(IV) heptahydrate, K₆-[As₆V₁₅O₄₂(H₂O)].6H₂O, is composed of an [As₆V₁₅-O₄₂(H₂O)]⁶⁻ anion, which has D_3 symmetry, and six seven-coordinate potassium ions. There is an H₂O molecule at the centre of the heteropolyanion. This anion consists of VO₅ pyramids linked by As₂O₅ units through shared O atoms. The V—O distances range from 1.604 (4) to 2.009 (4) Å, As—O from 1.772 (4) to 1.793 (3) Å, and K···O from 2.676 (6) to 3.311 (4) Å.

Comment

Iso- and heteropolyvanadates usually contain molecular anions with interesting cage structures. These polyvanadate cage anions form inclusion compounds with neutral molecules and anions, among which are $[V_{12}-O_{32}(MeCN)]^{4-}$ (Day *et al.*, 1989), $[V_{18}O_{42}(H_2O)]^{12-}$ (Johnson & Schlemper, 1978), $[V_{18}O_{42}(H_2O)]^{6-}$, $[V_{18}O_{42}(SO_4)]^{8-}$, $[As_6V_{15}O_{42}(H_2O)]^{6-}$, $[As_8V_{14}O_{42}(X)]^{6-}$, $[As_8V_{14}O_{42}(X)]^{6-}$, $[As_8V_{14}O_{42}(X)]^{6-}$ ($X = SO_3^{2-}$ or SO_4^{2-} ; Müller & Döring, 1991) and $[As_8V_{14}O_{42}(H_2O)_{1/2}]^{4-}$ (Huan *et al.*, 1991). The crystal structure has been reported for an $[As_6V_{15}O_{42}(H_2O)]^{6-}$ anion with H_2O at the centre in $K_6[As_6V_{15}O_{42}(H_2O)].8H_2O$ (Müller & Döring, 1988, 1991). The present study concerns the phase $K_6[As_6V_{15}O_{42}(H_2O)].6H_2O$, (I), which contains a similar anion to that found in $K_6[As_6V_{15}O_{42}(H_2O)].8H_2O$ (Müller & Döring, 1988, 1991).

The $[As_6V_{15}O_{42}(H_2O)]^{6-}$ anion has D_3 symmetry, and consists of 15 distorted VO₅ square pyramids and six AsO₃ triangular pyramids, with a statistically disordered H₂O molecule at its centre. Two AsO₃ groups are joined to each other *via* an oxygen bridge and form an As₂O₅ unit. Every VO₅ consists of one terminal O and four bridging O atoms. The VO₅ pyramids are joined through vertices and edges to their neighbouring VO₅ pyramids, but the AsO₃ groups are connected by VO₅ pyramids only through vertices. The 15 VO₅ pyramids linked with one another through vertices and edges are connected by As₂O₅ units through shared O atoms, and form a ball-like structure.

Fig. 1. View of the $[As_6V_{15}O_{42}(H_2O)]^{6-}$ anion, with displacement ellipsoids at the 50% probability level.